Networkx库的学习历程:绘制最小生成树
3 min read
Page Views
1.原始数据
各地点之间的距离数据如下所示:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 23 54 55 26
2 23 56 18
3 56 50 44 61
4 50 28 27
5 54 18 44 51 34 56 48
6 61 28 51 27 42
7 55 34 36 38
8 56 36 29 33
9 48 27 29 61 29 42 36
10 27 42 61 25
11 26 24
12 38 33 29 24 30
13 42 30 47
14 36 25 47
2.python程序
import numpy as np
import pandas as pd
from scipy.sparse import coo_matrix
import networkx as nx
import matplotlib.pyplot as plt
"""
numpy: 1.24.3
pandas: 1.5.3
networkx: 3.1
matplotlib: 3.7.5
"""
# 避免图片无法显示中文
plt.rcParams['font.sans-serif'] = ['SimHei']
# 显示所有列
pd.set_option('display.max_columns', None)
pd.set_option('display.width', 1000)
# 读取数据
data = pd.read_excel(io='data.xlsx', sheet_name='Sheet1', index_col=0)
data = data.fillna(0)
print('矩阵的空值以0填充:\n', data)
coo = coo_matrix(np.array(data))
# 矩阵行列的索引默认从0开始改成从1开始
coo.row += 1
coo.col += 1
data = [int(i) for i in coo.data]
coo_tuple = list(zip(coo.row, coo.col, data))
coo_list = []
for i in coo_tuple:
coo_list.append(list(i))
# 出发点
start_node = 1
# 目的地
target_node = 14
# 设置各顶点坐标(只是方便绘图,并不是实际位置)
pos = {1: (1, 8), 2: (4, 10), 3: (11, 11), 4: (14, 8), 5: (5, 7), 6: (10, 6), 7: (3, 5), 8: (6, 4), 9: (8, 4),
10: (14, 5), 11: (2, 3), 12: (5, 1), 13: (8, 1), 14: (13, 3)}
# 创建空的无向图
G = nx.Graph()
# 给无向图的边赋予权值
G.add_weighted_edges_from(coo_list)
# 最小生成树的求解:kruskal克鲁斯卡尔算法,prim普里姆算法,boruvka博鲁夫卡算法
plt.figure()
plt.suptitle('kruskal/prim/boruvka算法:最小生成树')
T = nx.minimum_spanning_tree(G, algorithm='kruskal')
# T=nx.minimum_spanning_tree(G, algorithm='prim')
# T=nx.minimum_spanning_tree(G, algorithm='boruvka')
# 绘制无向加权图
nx.draw(G, pos, with_labels=True)
# 设置最小生成树的顶点颜色
nx.draw_networkx_nodes(G, pos, nodelist=T.nodes, node_color='yellow', edgecolors='red')
# 设置最小生成树的边颜色和宽度
nx.draw_networkx_edges(G, pos, edgelist=T.edges, edge_color='blue', width=5)
# 显示无向加权图的边的权值
labels = nx.get_edge_attributes(G, name='weight')
# 显示边的权值
nx.draw_networkx_edge_labels(G, pos, edge_labels=labels, font_color='purple', font_size=10)
nx.draw_networkx_nodes(G, pos, nodelist=[start_node], node_color='#00ff00', edgecolors='red')
plt.show()
3.效果展示

4.伪代码
Kruskal算法 伪代码如下所示:

Prim算法 伪代码如下所示:

Boruvka算法 伪代码如下所示:

Last updated on 2025-05-22